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Abstract

The focus of this contribution is to develop a hypersingular integral equation method (HIEM) to solve the dynamic

interaction between multiple cracks and a circular hole illuminated by plane SH waves. The cracks can be in arbitrary

positions; in particular, they can terminate at the boundary of the circular hole. In order to solve the proposed problem,

the Green’s function of a point harmonic force applied at an infinite plane with a circular hole is obtained by the Graf

formula and the wave function expansion method. In order to construct the hypersingular integral equations for the

cracks, the Green’s function is separated into a closed form singular part and a regular part. On the basis of the

reciprocity principle as well as the obtained Green’s function, the hypersingular integral equations for the cracks are

obtained. Numerical solution of the hypersingular integral equations yields the dynamic stress intensity factors (DSIF)

at the crack tips. Comparison of present results with known results verifies the proposed method. Some numerical

examples are presented in the paper.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress concentration around holes is an important problem for civil engineering, earthquake engineering

and mechanical engineering and has, therefore, been investigated by numerous researchers using various

methods. There are large amount of investigations concerning hole problems, the most important contri-

butions of which were summarized in the two well-known works (Savin, 1961; Muskhelishvili, 1953b). In

the middle of 1950s, due to the requirements of practical engineering, the dynamic stress concentration
around holes began to attract the attention of many researchers (Pao and Mow, 1973). For example, the

dynamic response of a circular tunnel was investigated by Lee and Trifunac (1979) using the wave function
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expansion method; the stress concentration around multiple circular holes is studied by Providakis et al.

(1993) by using boundary element method (BEM) and Laplace transform method. For both the static and

the dynamic hole problems, the major concern is to calculate stress concentration factors along hole

boundaries, which are of great importance for engineering designs. Physically, the stress concentration
around hole boundaries may generate cracks near boundaries. As a result, the interaction between holes

and cracks has been a very popular topic for many researchers for a long time. For example, by using

complex method and superposition method, a general solution is obtained to the problem of the interaction

between a main crack and an arbitrarily located and oriented elliptical hole near its tip under mode III

loading conditions (Gong and Meguid, 1991). The boundary integral equation (BEM) method was for-

mulated to evaluate the stress intensity factors of a crack approaching a curvilinear hole in an anisotropic

plane under arbitrary loadings (Liaw and Kamel, 1991). By using complex variables method and Fredholm

integral equation method, the interaction between multiple cracks and a circular hole under antiplane
deformation was studied by Chen and Wang (1986). Owing to the inherent difficulties involved in the

dynamic crack–hole interaction, the researches about crack–hole interaction have been mainly limited to

the static case so far. However, from the practical point of view, the dynamic crack–hole interaction

problems are crucial for the earthquake engineering and nondestructive evaluation (NDE).

To date, there are many investigations concerning the interaction between cracks and elastic waves. For

instance, the scattering of elastic wave by a single crack and multiple cracks were investigated by Loeber

and Sih (1968), Gross and Zhang (1988), respectively. The dynamic response of an interface crack has been

addressed by Qu (1995). Moreover, the dynamic response of periodic cracks and randomly distributed
cracks have been investigated by Zhang (1991) and Murai et al. (1995), respectively. Nevertheless, very few

researches have been reported about the dynamic crack–hole interaction problems. Only very recently Liu

and Liu (1999) analyzed the dynamic problem of two co-linear cracks located along the radial direction of a

circular hole. As the Green’s function of a half plane with a half circular hole is used in their paper, hence,

the presented method in Liu and Liu (1999) is only valid for the case of co-linear cracks along radial

direction. Due to the fact that the edge cracks generate more instability than ordinary cracks, there are

many investigations concerning the dynamic edge cracks for a straight boundary (Liu et al., 1997; Stone

et al., 1980; Datta and Shah, 1982; Abduljabbar et al., 1983). However, for arbitrary dynamic edge cracks
of a circular boundary, no research has been carried out so far. Consequently, up to now, there does not

exist general analytical method that can be used to solve the dynamic interaction between arbitrarily lo-

cated cracks and a circular hole.

In principle, the finite element method (FEM) can be used to solve the dynamic crack–hole interaction

problems. However, it requires the discretization of the entire volume around cracks and the hole. Also, for

the unbounded domain, the absorbing boundary layers are necessary for the prevention of non-physical

reflection from the calculation boundary. An alternative for solving the dynamic crack–hole interaction

problems is the boundary element method (BEM). For the boundary element method, only the boundary of
the calculation domain needs to be discretized. Moreover, for the unbounded domain, the non-reflecting

condition can be satisfied automatically due to the analytical form of the Green’s function. However, the

direct application of the conventional displacement BEM equation to crack problems leads to ill-posed

singular form displacement BEM equations (Cruse, 1988). Up to now, several numerical strategies have

been developed to circumvent this limitation. One popular way of treating this problem is the multi-domain

method in conjunction with the common displacement BEM equation (Lachat and Watson, 1976). The key

point of the multi-domain method is to introduce artificial boundaries to make each region contain one

crack surface. The two major disadvantages of the multi-domain method are the computational cost and
the necessity of dealing with the singular stress field ahead of the crack. The displacement discontinuity

method can also be used to solve the crack problem in the frame of BEM (Crouch and Starfield, 1983). A

comprehensive discussion of the displacement discontinuity method can be found in Cruse (1996). Another

option for dealing with the singular form problem is the dual boundary element method (DBEM). In the
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DBEM, the singular form displacement BEM equation is avoided by using two different equations for the

boundary nodes on the two opposite sides of the crack (Portela and Aliabadi, 1992; Selcuk et al., 1994). The

obvious advantage of this method is it does not require any division of the calculation domain.

A drawback of the above-mentioned BEM for solving dynamic crack–hole interaction problems is the
necessity of discretizing the circular-hole boundary numerically, which will reduce the accuracy. The

objective of the present paper is to establish a special hypersingular integral equation method (HIEM) to

analyze the interaction between arbitrarily located multiple cracks and a circular hole on the basis of

the Green’s function and the hypersingular integral equation method. The main difference between our

approach and the BEM lies in using the crack opening displacements (COD) as the unknowns in our case,

which can avoid the ill-posed BEM equation problem and will result in hypersingular integral equations for

the CODs. Besides, the collocation method developed by Kaya and Erdogan is used to discretize the

obtained hypersingular integral equations, which is different from the mesh discretization method used in
the BEM. The hypersingular integral equation method (HIEM) has been used for the analysis of static

crack problems for a long time (Ioakimidis, 1983; Chen, 1995; Kaya and Erdogan, 1987; Nied, 1987). For

dynamic crack problems, there are also some researches have been done (Neerhoff, 1979; Krenk and

Schmidt, 1982; van den Berg, 1981). The recent review concerning the elastic wave scattering by cracks has

been presented by Bostr€om (2003). The major advantages of the presented HIEM is that it can be used to

calculate edge cracks of the circular hole due to the appropriate treatment of the Green’s function.

Moreover, due to the adoption of the specific Green’s function for the circular boundary domain, our

solution can satisfy the circular-hole boundary condition analytically. Consequently, in this sense, our
approach in this paper belongs to a semi-analytical method. In order to develop our approach, the Green’s

function of a point harmonic antiplane force applied at an infinite plane containing a circular hole is de-

rived by the Graf formula and the wave function expansion method. In terms of the asymptotic property of

the Hankel function and the Bessel function, the Green’s function is separated into a closed-form singular

part and a regular part, which will facilitate the construction of hypersingular integral equations for the

cracks. On the basis of the reciprocity principle as well as the obtained Green’s function, the hypersingular

boundary integral equations for the multiple cracks are derived. Numerical solution of the hypersingular

integral equations yields the dynamic stress intensity factors (DSIF) at the crack tips. Comparison of our
results with known results verifies the proposed method. For demonstration our method, some numerical

results and corresponding discussions are given in the paper.

Summarizing, the contribution of the present paper are as follows: (1) the Green’s function for a point

force applied at an infinite plane containing a circular hole is derived, more importantly, the closed form

expressions of the singular part Green’s function are obtained for the first time; (2) the hypersingular

boundary integral equations describing the dynamic interaction between the multiple cracks and a circular

hole are established; (3) the dynamic stress intensity factors (DSIF) at the crack tips are calculated by the

numerical solution of the obtained hypersingular integral equations.
2. Green’s function

2.1. Derivation of the Green’s function

In order to derive the hypersingular integral equations for the dynamic crack–hole interaction problem,

the Green’s function of a point harmonic force applied at an infinite plane with a circular hole is required.

Here, the linear elastic infinite plane with a circular hole is assumed to be isotropic, the shear modulus and

the density of which are l, q, respectively. Suppose the radius of the circular hole is R. Without loss of

generality, the origin of the coordinate system xoy is assumed to coincide with the center of the circular hole
(Fig. 1).
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Fig. 1. An infinite plane with a circular hole and subject to a harmonic point antiplane force.
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The Green’s function of the point force consists of two parts: a principal part and a complementary part.

The principal part is the solution for a point harmonic force applied at an infinite homogenous plane

without circular hole, while the complementary part is the scattered field of the circular hole due to the

incident wave of the principal Green’s function, which can be determined using wave function expansion

method as well as the boundary condition along the hole surface.

Suppose the point force is applied at point z ¼ qz eihz , where qz, hz denote the polar distance and polar

angle and i ¼
ffiffiffiffiffiffiffi
�1

p
(Fig. 1). The longitudinal displacement for the principal Green’s function has the form

(Achenbach, 1973)
wGðpÞ ðt; zÞ ¼ i
4l

H ð1Þ
0 ðkjt � zjÞe�ixs ð1Þ
t ¼ qt e
iht is the receiver, the superscript GðpÞ denotes the principal Green’s function, k ¼ x=vs is the wave

number and x, vs are angular frequency and shear wave velocity and H ð1Þ
0 ð�Þ denotes the zero order Hankel

function of the first kind. Since all the physical quantities contain the common time factor e�ixs, for sim-

plicity, it will be omitted in the remainder of the paper.

By using the Graf formula (Watson, 1962), the longitudinal displacement (1) is recast in the following

form
wGðpÞ ðt; zÞ ¼ i
4l

X1
m¼0

emJmðkqtÞH ð1Þ
m ðkqzÞ cos½mðht � hzÞ
; qt < qz ð2aÞ

wGðpÞ ðt; zÞ ¼ i
4l

X1
m¼0

emJmðkqzÞH ð1Þ
m ðkqtÞ cos½mðht � hzÞ
; qz < qt ð2bÞ
where Jmð�Þ is the mth order first kind Bessel function; em ¼ 1 if m ¼ 0, em ¼ 2 if mP 1 and in the remainder

of the paper, em has the same value.

Using the constitutive relations of the infinite plane, the stresses for the principal Green’s function

are
rGðpÞ

zr ðt; zÞ ¼ ik
4

X1
m¼0

emJ 0
mðkqtÞH ð1Þ

m ðkqzÞ cos½mðht � hzÞ
; qt < qz ð3aÞ

rGðpÞ

zh ðt; zÞ ¼ � i
4qt

X1
m¼1

memJmðkqtÞH ð1Þ
m ðkqzÞ sin½mðht � hzÞ
; qt < qz ð3bÞ
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rGðpÞ

zr ðt; zÞ ¼ ik
4

X1
m¼0

emJmðkqzÞH ð1Þ0
m ðkqtÞ cos½mðht � hzÞ
; qz < qt ð3cÞ

rGðpÞ

zh ðt; zÞ ¼ � i
4qt

X1
m¼1

memJmðkqzÞH ð1Þ
m ðkqtÞ sin½mðht � hzÞ
; qz < qt ð3dÞ
where a prime denotes derivative with respect to the corresponding variable. In terms of the wave function

expansion method (Pao and Mow, 1973), the complementary Green’s function, i.e., the scattered field of

the circular hole due to the incident wave (1) may be expressed by
wGðdÞ ðt; zÞ ¼
X1
m¼0

AmH ð1Þ
m ðkqtÞ cos½mðht � hzÞ
 ð4Þ
where the superscript GðdÞ denotes the complementary Green’s function. In terms of (1), (3) and (4), the
displacement and stresses of the total Green’s function are given by the following expressions
wGðt; zÞ ¼ wGðpÞ ðt; zÞ þ wGðdÞ ðt; zÞ ð5aÞ

rG
zrðt; zÞ ¼ rGðpÞ

zr ðt; zÞ þ rGðdÞ

zr ðt; zÞ ð5bÞ

rG
zhðt; zÞ ¼ rGðpÞ

zh ðt; zÞ þ rGðdÞ

zh ðt; zÞ ð5cÞ
The total Green’s function satisfies following stress boundary condition
l
o½wGðpÞ ðt; zÞ þ wGðdÞ ðt; zÞ


oqt

�����
qt¼R

¼ 0 ð6Þ
Inserting Eqs. (2a), (4) into (6), the coefficients Am in Eq. (4) are obtained
Am ¼ � iem
4l

H ð1Þ
m ðkqzÞJ 0

mðkRÞ
H ð1Þ0

m ðkRÞ
ð7Þ
Substituting Eq. (7) into Eq. (4) and using Eqs. (2) and (5), the total Green’s function can be obtained.

In terms of the constitutive relations, the stresses for the complementary Green’s function in Eq. (5b)
and (5c) have the following expressions
rGðdÞ

zr ðt; zÞ ¼ lk
X1
m¼0

AmH ð1Þ0
m ðkqtÞ cos½mðht � hzÞ
 ð8aÞ

rGðdÞ

zh ðt; zÞ ¼ � l
qt

X1
m¼1

mAmH ð1Þ
m ðkqtÞ sin½mðht � hzÞ
 ð8bÞ
where coefficients Am are given by Eq. (7).

2.2. The decomposition of the Green’s function

In the previous section, the Green’s function of a point force was determined. It follows from Eq. (1) that

the principal Green’s function is unbounded when t ! z. In order to establish the hypersingular integral
equations for the cracks as well as to calculate the Green’s function correctly, the singular parts should be

extracted from the total Green’s function.



6730 J.-F. Lu, A. Hanyga / International Journal of Solids and Structures 41 (2004) 6725–6744
The procedure of extracting singular part from Eq. (3) consists in subtracting the divergent parts from

the series of the Green’s function and calculating the closed form expressions for the divergent parts. In

order to explain the decomposition procedure, we take Eq. (3a) as an example.

Hankel function and Bessel function of the first kind have the following asymptotic property
(Abramowitz and Stegun, 1965)
H ð1Þ
m ðnÞ ! � ðm� 1Þ!

p
2

n

� �m

i; ðm ! 1Þ ð9aÞ

JmðnÞ !
1

m!
n
2

� �m

; ðm ! 1Þ ð9bÞ
Using Eq. (9), Eq. (3a) is rewritten as
rGðpÞ

zr ðt; zÞ ¼
X1
m¼1

ik
2
J 0
mðkqtÞH ð1Þ

m ðkqzÞ
�

� 1

2pqt

qt

qz

� �m�
cos½mðht � hzÞ
 þ

ik
4
J 0

0ðkqtÞH
ð1Þ
0 ðkqzÞ

þ
X1
m¼1

1

2pqt

qt

qz

� �m

cos½mðht � hzÞ
; qt < qz ð10Þ
The first and the second term in Eq. (10) are everywhere finite, while the third term in the above equation is
unbounded when t ! z. However, the closed form expression for the third term has the form
X1
m¼1

1

2pqt

qt

qz

� �m

cos½mðht � hzÞ


¼ 1

4pqt

X1
m¼1

qt

qz
eiðht�hzÞ

� �m�
þ qt

qz
e�iðht�hzÞ

� �m	
¼ 1

4p
eiht

z� t

�
þ e�iht

�z��t

�
; qt < qz ð11Þ
where �z ¼ qze
�ihz and �t ¼ qte

�iht denote the complex conjugates of z and t, respectively.

Therefore, it follows from (10) and (11) that the Green’s function of Eq. (10) has been divided into a

singular part and a bounded part. The singular part has a closed form expression and becomes unbounded

when t ! z, while the bounded part is everywhere finite. Eq. (3b) can have similar decomposition if the
same decomposition method is used. Consequently, the stresses of the principal Green’s function for qt < q
have following decomposition
rGðpÞ

zr ðt; zÞ ¼ rGðpÞ

zrR ðt; zÞ þ rGðpÞ

zrS ðt; zÞ ð12aÞ

rGðpÞ

zh ðt; zÞ ¼ rGðpÞ

zhR ðt; zÞ þ rGðpÞ

zhS ðt; zÞ ð12bÞ
where the subscripts R and S represent the regular and singular part of the Green’s function and the regular

and the singular stresses are given by
rGðpÞ

zrR ðt; zÞ ¼
X1
m¼1

ik
2
J 0
mðkqtÞH ð1Þ

m ðkqzÞ
�

� 1

2pqt

qt

qz

� �m�
cos½mðht � hzÞ
 þ

ik
4
J 0

0ðkqtÞH
ð1Þ
0 ðkqzÞ; qt < qz

ð13aÞ

rGðpÞ

zrS ðt; zÞ ¼ 1

4p
eiht

z� t

�
þ e�iht

�z��t

�
; qt < qz ð13bÞ



J.-F. Lu, A. Hanyga / International Journal of Solids and Structures 41 (2004) 6725–6744 6731
rGðpÞ

zhR ðt; zÞ ¼ �
X1
m¼1

i
2qt

mJmðkqtÞH ð1Þ
m ðkqzÞ

�
� 1

2pqt

qt

qz

� �m�
sin½mðht � hzÞ
; qt < qz ð13cÞ

rGðpÞ

zhS ðt; zÞ ¼ � 1

4pi
eiht

z� t

�
� e�iht

�z��t

�
; qt < qz ð13dÞ
Similarly, for the case of qt > qz in Eqs. (3c) and (3d), using the same decomposition method as above, one

has the same decomposition formula as Eq. (12). The corresponding regular part and the singular part

stresses for Eqs. (3c) and (3d) are given by
rGðpÞ

zrR ðt; zÞ ¼
X1
m¼0

ikem
4

JmðkqzÞH ð1Þ0
m ðkqtÞ

�
þ 1

2pqt

qz

qt

� �m�
cos½mðht � hzÞ
; qt > qz ð14aÞ

rGðpÞ

zrS ðt; zÞ ¼ 1

4p
eiht

z� t

�
þ e�iht

�z��t

�
; qt > qz ð14bÞ

rGðpÞ

zhR ðt; zÞ ¼ �
X1
m¼1

i
2qt

mJmðkqzÞH ð1Þ
m ðkqtÞ

�
� 1

2pqt

qz

qt

� �m�
sin½mðht � hzÞ
; qt > qz ð14cÞ

rGðpÞ

zhS ðt; zÞ ¼ � 1

4pi
eiht

z� t

�
� e�iht

�z��t

�
; qt > qz ð14dÞ
From Eqs. (13) and (14), it can be seen that the singular stresses of the principal Green’s function have the

same expressions for the case of qt < qz and qt > qz. Therefore, in global Cartesian coordinates xoy, the

singular stresses of the principal Green’s function have the following uniform expression
rGðpÞ

zxS ðt; zÞ � irGðpÞ

zyS ðt; zÞ ¼
1

2p
1

z� t
ð15Þ
Note that except for the time factor e�ixs, the singular stresses of the principal Green’s function coincide

with the Green’s function of the corresponding static problem.

On the other hand, it follows from Eqs. (7)–(9) that if z ! CR and t ! z, the complementary Green’s

function given by Eqs. (7) and (8) are unbounded. Consequently, the complementary Green’s function also

contains singular parts. For the same reason, the singular parts must be subtracted from the comple-

mentary Green’s function. We shall use Eq. (8a) to explain the decomposition of the complementary

Green’s function. Using Eqs. (7) and (9), Eq. (8a) is separated as follows
rGðdÞ

zr ðt; zÞ ¼
X1
m¼1

lkAmH ð1Þ0
m ðkqtÞ þ

1

2p
1

qt

R2

qtqz

� �m� �
cos½mðht � hzÞ
 þ lkA0H

ð1Þ0
0 ðkqtÞ

�
X1
m¼1

1

2p
1

qt

R2

qtqz

� �m

cos½mðht � hzÞ
 ð16Þ
where the first and second terms in the above equation are bounded while the third term is unbounded

when z ! CR and t ! z. The closed form expression for the third term has the form
�
X1
m¼1

1

2p
1

qt

R2

qtqz

� �m

cos½mðht � hzÞ
 ¼ � 1

4pqt

X1
m¼1

R2

qtqz
eiðht�hzÞ

� �m�
þ R2

qtqz
e�iðht�hzÞ

� �m	

¼ � 1

4p
1

t
R2eiht

�tz� R2

�
þ R2eiht

t�z� R2

�
ð17Þ
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Using Eqs. (7) and (9), Eq. (8b) can be separated in a similar way. Consequently, the stresses of the

complementary Green’s function have the following decomposition
rGðdÞ

zr ðt; zÞ ¼ rGðdÞ

zrR ðt; zÞ þ rGðdÞ

zrS ðt; zÞ ð18aÞ
rGðdÞ

zh ðt; zÞ ¼ rGðdÞ

zhR ðt; zÞ þ rGðdÞ

zhS ðt; zÞ ð18bÞ
where the regular and singular stresses are given by
rGðdÞ

zrR ðt; zÞ ¼
X1
m¼1

lkAmH ð1Þ0
m ðkqtÞ

�
þ 1

2p
1

qt

R2

qtqz

� �m�
cos½mðht � hzÞ
 þ lkA0H

ð1Þ0
0 ðkqtÞ ð19aÞ
rGðdÞ

zrS ðt; zÞ ¼ � 1

4p
1

t
R2eiht

�tz� R2

�
þ R2eiht

t�z� R2

�
ð19bÞ
rGðdÞ

zhR ðt; zÞ ¼ �
X1
m¼1

l
qt

mAmH ð1Þ
m ðkqtÞ

�
� 1

2p
1

qt

R2

qtqz

� �m�
sin½mðht � hzÞ
 ð19cÞ
rGðdÞ

zhS ðt; zÞ ¼ � 1

4pi
1

t
R2eiht

�tz� R2

�
� R2eiht

t�z� R2

�
ð19dÞ
where the coefficients Am are given by Eq. (7).

If the following stress combination is introduced, the singular stresses in Eq. (19) is rewritten as
rGðdÞ

zxS ðt; zÞ � irGðdÞ

zyS ðt; zÞ ¼ � 1

2p
R2

tðt�z� R2Þ ð20Þ
It is worth noting that the singular stresses of the complementary Green’s function in Eq. (20) have the

same expressions as the corresponding static case except the time factor e�ixs (Lu, 2000).

In this section, the Green’s function of a point harmonic force applied at an infinite plane with a circular

hole is derived. The Green’s function is separated into a regular part and singular part. The closed form
expressions for the singular part Green’s function, which are crucial for the construction of the hyper-

singular integral equations, are obtained for the first time.
3. The hypersingular boundary integral equations for the multiple cracks

The total wave fields of the crack–hole interaction problem can be divided into two parts. One part is the

free field, in which case it is assumed that the cracks do not exist. Then, the free wave field is determined by

the incident plane SH wave and the scattered field of the circular hole. The scattered field of the circular

hole can be obtained by using the wave function expansion method. The other part is the scattered field of

the cracks. On the basis of the reciprocity principle and using the obtained Green’s function, the scattered

field of the cracks can be expressed by the crack opening displacements (COD). Using the boundary
conditions along the crack surfaces, the hypersingular integral equations can be obtained in terms of the

free wave field and the scattered field of the cracks.



J.-F. Lu, A. Hanyga / International Journal of Solids and Structures 41 (2004) 6725–6744 6733
3.1. The scattered field of a single crack

Suppose there are N arbitrarily located cracks near a circular hole (Fig. 2). The total scattered field of the

N cracks is the superposition of the scattered fields of the N single cracks; hence in order to obtain the total
scattered field, the scattered field of a single crack is required.

Assume that the half length of crack Lj is aj and the two tips of the crack are Aj, Bj, respectively. The

obliquity angle of Lj with respect to the x-axis is aj þ bj; the polar angle and polar distance of tip Aj are aj,

qAj
respectively; the obliquity angle of Lj with respect to the xj-axis is bj (Fig. 2). Since the Green’s function

has been separated into a singular and a regular part, accordingly, the scattered field of the Lj can also be

divided into a singular part and a regular part.

To begin with, we discuss the singular scattered field of the Lj. Let the crack opening displace-

ment (COD) of Lj be WjðuÞ, 06 u6 2aj (Fig. 2). By using Eqs. (15) and (20) and the reciprocity
principle (Kupradze, 1965), the displacement of the singular scattered field of the crack Lj is obtained as

follows
wðsjÞ
S ðzÞ ¼ � 1

4pi

Z 2aj

0

WjðuÞ
eiðajþbjÞ

z� t

�
� e�iðajþbjÞ

�z��t

�
duþ 1

4pi

Z 2aj

0

WjðuÞ
R2eiðajþbjÞ

tðt�z� R2Þ

"
� R2e�iðajþbjÞ

�tð�tz� R2Þ

#
du

ð21Þ
where the superscript sj represents the scattered field of the crack Lj; the subscript S denotes the singular
part of the scattered field; z ¼ qze

ihz ¼ xþ iy, t is integration point and t ¼ qte
iht ¼ qAj

eiaj þ ueiðajþbjÞ. Using

the constitutive relation, the stress of the singular scattered field of the crack Lj in xoy–coordinate system

are given by
rðsjÞ
zxS ðzÞ � irðsjÞ

zyS ðzÞ ¼
l

2pi

Z 2aj

0

WjðuÞ
eiðajþbjÞ

ðt � zÞ2
duþ l

2pi

Z 2aj

0

WjðuÞ
R2e�iðajþbjÞ

ð�tz� R2Þ2
du ð22Þ
The regular scattered field of the Lj can also be obtained by using the regular Green’s function (13), (14) and

(19) as well as the reciprocity principle (Kupradze, 1965). The longitudinal displacement of the regular

scattered field of the Lj reads
xoR

y

CR

2ai

SH

xi

yi

Ai

i

Bi

i
Li

2aj

xj

yj

xj’

yj’

AjBj Lj

j

j

yj’

xi’ 

β

β

µ,ρ

α

α

γ

Fig. 2. Dynamic interaction between multiple cracks and a circular hole swept by SH wave.
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wðsjÞ
R ðzÞ ¼

Z 2aj

0

WjðuÞ ½rGðpÞ

zhR ðt; zÞ
n

þ rGðdÞ

zhR ðt; zÞ
 cosðaj þ bj � htÞ � rGðpÞ

zrR ðt; zÞ
h

þ rGðdÞ

zrR ðt; zÞ
i

sinðaj þ bj � htÞ
o

du

ð23Þ
where the subscript R in (23) represents the regular part of the scattered field and the stress components

rGðpÞ
zhR ðt; zÞ, rGðdÞ

zhR ðt; zÞ, rGðpÞ
zrR ðt; zÞ, rGðdÞ

zrR ðt; zÞ in Eq. (23) are given by Eqs. (13), (14) and (19). The stresses

determined by the regular scattered field of Lj have the form
rðsjÞ
zrR ðzÞ ¼ l

Z 2aj

0

WjðuÞ
orGðpÞ

zhR ðt; zÞ
oqz

"(
þ orGðdÞ

zhR ðt; zÞ
oqz

#
cosðaj þ bj � htÞ �

orGðpÞ
zrR ðt; zÞ
oqz

"
þ orGðdÞ

zrR ðt; zÞ
oqz

#

� sinðaj þ bj � htÞ
)

du ð24aÞ

rðsjÞ
zhRðzÞ ¼

l
qz

Z 2aj

0

WjðuÞ
orGðpÞ

zhR ðt; zÞ
ohz

"(
þ orGðdÞ

zhR ðt; zÞ
ohz

#
cosðaj þ bj � htÞ �

orGðpÞ
zrR ðt; zÞ
ohz

"
þ orGðdÞ

zrR ðt; zÞ
ohz

#

� sinðaj þ bj � htÞ
)

du ð24bÞ
3.2. Derivation of the hypersingular boundary integral equations

The considerations of the above section gave us the scattered field of a single crack. The total scattered

field of the N cracks can be obtained by superposing the scattered fields of the N single cracks. As men-

tioned above, the hypersingular integral equations can be constructed by using the free wave field and the

total scattered field of the N cracks. The superposition of the free wave field and the scattered field of the

cracks satisfies the stress-free condition along the crack surfaces. Consequently, for an arbitrary collocation

point z (Fig. 2) at the crack Li, one has
rðf Þ
zy0i
ðzÞ þ

XN
j¼1

rðsjÞ
zy0i

ðzÞ ¼ 0; z 2 Li; i ¼ 1; . . . ;N ð25Þ
where the superscript f denotes the free wave field and the subscript zy0i of the stresses implies that the

stresses in Eq. (25) are the stress components with respect to the x0iAiy0i coordinate system (Fig. 2). Sub-
stitution of Eqs. (22) and (24) into (25) yields the following group of hypersingular integral equations for

the multiple cracks
l
2p

f :p:

Z 2ai

0

WiðuÞ
ðu� vÞ2

duþ l
2p

Z 2ai

0

WiðuÞRe
R2

ð�tz� R2Þ2

" #
duþ

XNðj 6¼iÞ

j¼1

Z 2aj

0

WjðuÞkijSðt; zÞdu

þ
XN
j¼1

Z 2aj

0

WjðuÞkijRðt; zÞdu ¼ �rðf Þ
zy0i
ðzÞ ð26aÞ

06 v6 2ai; z 2 Li; i ¼ 1; . . . ;N ; 06 u6 2aj; j ¼ 1; . . . ;N

kijSðt; zÞ ¼
l
2p

Re
eiðaiþbiþajþbjÞ

ðt � zÞ2

" #
þ l

2p
Re

R2eiðaiþbi�aj�bjÞ

ð�tz� R2Þ2

" #
ð26bÞ
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kijRðt; zÞ ¼
l
qz

orGðpÞ
zhR ðt; zÞ
ohz

"
þ orGðdÞ

zhR ðt; zÞ
ohz

#
cosðaj þ bj � htÞ cosðai þ bi � hzÞ �

l
qz

orGðpÞ
zrR ðt; zÞ
ohz

"
þ orGðdÞ

zrR ðt; zÞ
ohz

#

� sinðaj þ bj � htÞ cosðai þ bi � hzÞ � l
orGðpÞ

zhR ðt; zÞ
oqz

"
þ orGðdÞ

zhR ðt; zÞ
oqz

#
cosðaj þ bj � htÞ

� sinðai þ bi � hzÞ þ l
orGðpÞ

zrR ðt; zÞ
oqz

"
þ orGðdÞ

zrR ðt; zÞ
oqz

#
sinðaj þ bj � htÞ sinðai þ bi � hzÞ ð26cÞ
where f.p. indicates that the hypersingular integral in the above equations must be defined in the sense of a
finite-part integral (Hadamard, 1923); z ¼ qze

ihz ¼ qAi
eiai þ veiðaiþbiÞ is the collocation point on Li and

t ¼ qte
iht ¼ qAj

eiaj þ ueiðajþbjÞ is the integration point located on Lj.
4. Numerical method and results

4.1. Numerical method for solving the hypersingular integral equations

The integral equation (26) are one-dimensional hypersingular integral equations. There is a standard

numerical method for solving this kind of hypersingular integral equation (Kaya and Erdogan, 1987).

Before numerical solution, we standardize the above hypersingular integral equations as follows
l
2p

f :p:

Z 1

�1

wiðsÞds

ðs � rÞ2
þ l

2p

Z 1

�1

wðsÞdsRe
R2a2

i

½�tðsÞzðrÞ � R2
2

( )
þ

XNðj 6¼iÞ

j¼1

Z þ1

�1

wjðsÞkijS ½tðsÞ; zðrÞ
a2
j ds

þ
XN
j¼1

Z þ1

�1

wjðsÞkijR½tðsÞ; zðrÞ
a2
j ds ¼ �rðf Þ

zy0i
½zðrÞ
; zðrÞ 2 Li; i ¼ 1; . . . ;N ð27Þ
where s ¼ ðu� ajÞ=aj, j ¼ 1; . . . ;N , r ¼ ðv� aiÞ=ai, i ¼ 1; . . . ;N , �16 s; r6 þ 1, wiðsÞ ¼ 1
ai

WiðuÞ,
i ¼ 1; . . . ;N .

The unknown functions in Eq. (27) are assumed following form
wiðsÞ ¼ ð1 þ sÞcið1 � sÞ1=2hiðsÞ; hiðsÞ ¼
XM
k¼0

ciksk ð28a; bÞ
where ci and 1/2 are the stress singularity order at the tip Ai and Bi; hiðsÞ are analytical functions which are

expanded into Taylor series (28b). In the present paper, we truncate the series and take M terms to

approximate the functions hiðsÞ. Our calculations demonstrate that if M is larger than 6, satisfactory results

can be achieved. Note that generally, for the dynamic problem in this paper, the coefficients cik in Eq. (28b)

are complex.

The ci in Eq. (28a) takes the value 1/2 if the tip Ai is embedded in the homogeneous linear elastic medium,

while it vanishes if the tip Ai terminates at the boundary of the circular hole (Kaya and Erdogan, 1987).
For calculating the hypersingular integral in the integral equations, following finite-part regularization

formula (Hadamard, 1923; Kaya and Erdogan, 1987) is used
f :p:

Z 1

�1

wðsÞds

ðs � rÞ2
¼

Z 1

�1

½wðsÞ � wðrÞ � ðs � rÞw0ðrÞ
 ds

ðs � rÞ2
� wðrÞ 1

1 þ r

�
þ 1

1 � r

�
þ w0ðrÞ log

1 � r
1 þ r

� �

ð29Þ

where the integral on right-hand side is a convergent improper integral.
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If the collocation points for discretization of Eq. (27) are chosen according to the formula
rk ¼ cos
2k þ 1

M þ 1

p
2

� �
ðk ¼ 0; 1; . . . ;MÞ ð30Þ
Eq. (27) can be reduced to ðM þ 1Þ � N complex algebraic equations. Numerical solution of the
ðM þ 1Þ � N complex algebraic equations yields the complex coefficients in Eq. (28b). The functions hiðsiÞ
and the dynamic stress intensity factors (DSIF) at the crack tips can be calculated in a straightforward

manner after determining the complex coefficients.

As mentioned above, if the tip Ai terminates at the hole boundary, there is no stress singularity at the tip

Ai. If tip Ai is embedded in the homogeneous linear elastic medium, then in a neighborhood of the tip Ai

(u ¼ 0), the crack open displacement (COD) WiðuÞ of the crack Li has the form
WiðuÞ ¼ u1=2W�
Ai
ðuÞ ð31Þ
where W�
Ai
ðuÞ satisfies the H€older condition in a neighborhood of the tip Ai. By using the behavior of

Cauchy type integral (Muskhelishvili, 1953a), the dynamic stress intensity factor (DSIF) of the tip Ai is

expressed as
K3Ai ¼
ffiffiffiffiffiffi
2p

p

4
lW�

Ai
ð0Þ ð32Þ
Similarly, at the neighborhoods of tip Bi (u ¼ 2ai), the crack open displacement (COD) WiðuÞ has the form
WiðuÞ ¼ ð2ai � uÞ1=2W�
Bi
ðuÞ ð33Þ
where W�
Bi
ðuÞ satisfies the H€older condition in the neighborhoods of the tip Bi. Again, by the asymptotic

property of Cauchy type integral (Muskhelishvili, 1953a), the dynamic stress intensity factor (DSIF) at the

tip Bi is given by the expression
K3Bi ¼
ffiffiffiffiffiffi
2p

p

4
lW�

Bi
ð2aiÞ ð34Þ
4.2. Numerical results and discussion

Although the present method is quite general, due to the limitations of the paper, we only present

calculation and discussion for some typical examples. For verifying the proposed method, in Section 4.2.1.

our results are compared with some known results. In Sections 4.2.2–4.2.6 some numerical results and

corresponding analysis are given. In computation, the Green’s functions in Eqs. (13),(14) and (19) are
expressed as 50-term truncated series. The parameter M in Eq. (28b) is taken as 8 in all the numerical

examples.

4.2.1. Comparison of our results with known results

In this section, some special cases of our solution are compared with three known results. The com-

parison shows that our solution is in a good agreement with the known results.

Two co-linear radial cracks of the same length terminate at opposite sides of the boundary of a circular

hole. If the length of the cracks is much larger than the radius of the circular hole, then the crack–hole

interaction problem is reduced to a single straight crack problem. In calculation, let a1 ¼ a2 ¼ 0:5, R ¼ 0:01

and the incidence angle of SH wave equal to 90�. The results (DSIF) of present paper are compared with
Fig. 2 in Loeber and Sih (1968). From Fig. 3, it can be seen that our results agree very well with those of

Loeber and Sih (1968).
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Loeber and Sih (1968).
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Two co-linear radial cracks of the same length terminate at the opposite sides of the boundary of a

circular hole. The incidence angle of SH wave is 90�. This particular problem was solved in Liu and Liu

(1999). The comparison of the results (DSIF) of the present paper with those of Liu and Liu (1999) is shown

in Fig. 4. It can be seen clearly from Fig. 4 that the present results are in good agreement with those of Liu

and Liu (1999).

The incidence angle of SH wave is 90�. If let the wave number of the incident wave approach zero, then,
the dynamic problem in this paper is reduced to a static crack–hole interaction problem. The position of

the two cracks are shown in Fig. 5. Our results are compared with those of Chen and Wang (1986). From

Table 1, an extremely good agreement between the two results is observed.
4.2.2. The influence of the length of an edge crack on its DSIFs

In this example, the relation between the length of an edge crack and its DSIFs will be considered. The

two tips of the crack are A and B, respectively. The tip A of the crack terminates at the boundary of the

circular hole, while the tip B of the crack is located in the homogeneous medium. Therefore, one has

qA ¼ R. The length of the crack is 2a and the ratio a=R takes 0:1; 0:3; 0:7; 1:0. In calculation, we assume
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Fig. 4. Results of this paper for the case of two co-linear radial cracks compared with those of Liu and Liu (1999).
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Fig. 5. An infinite region with one circular hole and two cracks subject to static antiplane load.

Table 1

Comparison of our results with those of Chen and Wang (1986)

h (�) 0� 10� 20� 30� 40� 50� 60� 70� 80� 90�

k3A 1.290 1.288 1.282 1.275 1.267 1.260 1.254 1.250 1.247 1.246

k3A� 1.289 1.287 1.287 1.275 1.267 1.260 1.254 1.250 1.247 1.246

k3B 1.725 1.722 1.712 1.699 1.685 1.672 1.662 1.654 1.649 1.648

k3B� 1.725 1.721 1.712 1.699 1.687 1.672 1.662 1.654 1.649 1.648

k3C 1.725 1.650 1.464 1.233 0.998 0.768 0.547 0.330 0.117 �0.091

k3C� 1.725 1.650 1.463 1.233 0.998 0.768 0.546 0.330 0.117 �0.091

k3D 1.289 1.267 1.204 1.107 0.982 0.835 0.669 0.487 0.294 0.091

k3D� 1.289 1.267 1.204 1.107 0.982 0.835 0.669 0.487 0.294 0.091

Note: k3A, k3B, k3C , k3D are the results of the present paper and k3A�, k3B�, k3C�, k3D� are those of Chen and Wang (1986).
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a ¼ p=4, b ¼ �p=4. Thus, the edge crack is parallel to the x-axis. Assume the incident angle of the plane SH

wave is 270� and the incident plane SH wave is given by
wðIÞðzÞ ¼ AI eik½cos cxþsin cy
 ð35Þ
where AI, k are the displacement amplitude and the wave number and c is the incident angle. The dynamic

stress intensity factor (DSIF) at the tip B of the crack is expressed as follows
K3B ¼ lAIk
ffiffiffiffiffiffi
pR

p
k3B ð36Þ
In general, the DSIFs take complex values, so only the absolute values of the DSIFs are given here. Results
showing the variation of jk3Bj versus the non-dimensional wave number kR are given in Fig. 6. The kR in

Fig. 6 varies from 0 to 4.0. With the increasing of a=R, the maximum values of jk3Bj increase corre-

spondingly. Also, the low frequency resonance phenomenon becomes more pronounced when a=R takes

larger value.
4.2.3. The influence of the incidence angle of SH waves on the DSIFs of an edge crack

In this example, we will consider the influence of the incidence angle of the SH wave on the dynamic

response of a crack terminating at the boundary of the circular hole. Suppose the tip A of the crack ter-

minates at the hole boundary ðqA ¼ RÞ and the tip B is embedded in the homogeneous medium. Let a ¼ 0,

b ¼ p=4 and let the length of the crack be 2a. The ratio a=R takes 0.1, 0.3, 0.7, 1.0. The incidence angle of

the SH wave takes 0�, 45�, 90�, 135� and 180� and the non-dimensional wave number kR varies from 0 to
4.0. The DSIFs are normalized by Eq. (36). Fig. 7 shows the variation of jk3Bj versus the non-dimensional
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wave number kR for different incident angles. When the incidence angle is 0�, jk3Bj takes small value for

smaller a=R; but for larger value a=R, jk3Bj increases significantly. This is due to the fact that when the

incident angle is 0�, the crack is on the shadow side of the hole, so its dynamic response is weak, but when

the crack length increases, the crack reaches beyond the shadow region of the hole. Moreover, both the
amplitude and the resonance frequency of jk3Bj depend on the incident wave significantly. For small values

a=R, jk3Bj achieves a maximum at 90� incidence angle; but for large value of a=R, jk3Bj has a maximum at

135�. In addition, the resonance phenomenon is more obvious for 90� and 135� than for the other incidence

angles.
4.2.4. The influence of the obliquity of an edge crack on its DSIFs

In this example, the influence of crack position will be considered. Suppose the tip A of an edge crack

terminates at the hole boundary while tip B is embedded in the homogeneous medium. The non-dimen-

sional values of DSIFs are defined in Eq. (36). The calculation parameters are chosen as: qA ¼ R, a ¼ 0,

�85�6 b6 85�, a=R ¼ 0:1, 0.3, the incident angle of the plane SH wave c ¼ 90� and the non-dimensional

wave number kR ¼ 0:0, 1.0, 2.0, 3.0, 4.0. Fig. 8 illustrates the variation of jk3Bj versus the angle b. For small
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Fig. 8. The influence of the obliquity of an edge crack on its DSIFs with b ¼ �85� to 85�, incidence angle c ¼ 90� and kR ¼ 0:0, 1.0, 2.0,

3.0, 4.0, respectively: (a) case for a=R ¼ 0:1 and (b) case for a=R ¼ 0:3.
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value kR, k3Bj j achieves its maximum when the crack is near the horizontal position, while for larger kR, jk3Bj
does not achieve maximum at the horizontal position. So for the static and lower frequency problem, the

edge cracks normal to the direction of SH wave propagation are more dangerous than others; while for the

high frequency case, the dangerous position of the edge cracks depends on the ratio a=R and the wave
number of the incident wave.
4.2.5. Two parallel cracks interacting with a circular hole

Consider two cracks L1, L2 near the circular hole and the two cracks are parallel to the x-axis. The tips of
the two cracks are A1, B1 and A2, B2 respectively. The lengths of the L1 and L2 are 2a1 and 2a2. Assume the

ratio a1=R ¼ a2=R ¼ 0:1, 0.3, 0.7, 1.0. The midpoints of the two cracks coincide with the y-axis (Fig. 9a).

The distances between the cracks and the x-axis are equal to h and h=R ¼ 1:2. The incident angle of plane

SH wave is 90� (Fig. 9a). The values of DSIFs at the crack tips are normalized by Eq. (36). The variations of

jk3A1
j, jk3B1

j, jk3A2
j, jk3B2

j versus the non-dimensional wave number kR for different values of a1=R, a2=R are

given in Fig. 9. The value kR varies from 0 to 5.0. Fig. 9 shows that for small values of a1=R and a2=R, jk3A1
j,

jk3B1
j, jk3A2

j, jk3B2
j do not vary significantly with the variation of wave number and the resonance phe-

nomenon is not apparently visible. For larger values of a1=R, a2=R, the resonance phenomenon gets more
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Fig. 9. Two parallel cracks interacting with a circular hole with kR ¼ 0:0–5:0, incidence angle c ¼ 90�, h=R ¼ 1:2 and

a1=R ¼ a2=R ¼ 0:1, 0.3, 0.7, 1.0: (a) results for the tips A1 and B1, (b) results for the tips A2 and B2.
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pronounced: the resonance frequencies decrease; the resonance amplitudes increase considerably; the res-

onance domains get narrow. It also can be concluded from Fig. 9, that the resonance amplitude of the crack

A2B2 which is at the incident side of the circular hole are always greater than those of the crack A1B1.

However, the difference between the resonance amplitudes of the two cracks decreases with increasing crack
lengths.
4.2.6. Interaction between an edge crack, an interior crack and a circular hole

In this example the interaction between the two cracks near the circular hole will be considered. Let A1,
B1 and A2, B2 denote the tips of L1, L2 respectively. The tip A2 of the crack L2 terminates at the hole

boundary ðqA2
¼ RÞ. Suppose qA1

¼ 1:1R, a1 ¼ 0, b1 ¼ 45� and a2 ¼ 180�, b2 ¼ 0�. Let the lengths of L1, L2

be 2a1, 2a2. The length of L1 is fixed and a1=R ¼ 0:3, while a2=R ¼ 0:1, 0.3, 0.7, 1.0. The incident angle of the

plane SH wave is 90�. The values of DSIFs at tips A1, B1, B2 are normalized by Eq. (36). The variations of

jk3A1
j, jk3B1

j, jk3B2
j for different a2=R versus non-dimensional wave number kR are given in Fig. 10. With the

increasing of a2=R, jk3B2
j increase significantly. Also, the resonance phenomena of the L2 are significant

when a2=R increases, while the resonance frequencies vary little. In addition, jk3A1
j, jk3B1

j also increase

slightly with increasing a2=R.
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Fig. 10. Interaction between two cracks: an edge crack, an interior crack and a circular hole with kR ¼ 0:0–4:0 and incidence angle

c ¼ 90�: (a) case for a2=R ¼ 0:1, (b) case for a2=R ¼ 0:3, (c) case for a2=R ¼ 0:7, (d) case for a2=R ¼ 1:0.



J.-F. Lu, A. Hanyga / International Journal of Solids and Structures 41 (2004) 6725–6744 6743
5. Conclusions

Through above analysis and calculation, we can draw following conclusions:

(1) A special hypersingular integral equation method (HIEM) for solving the dynamic interaction between
multiple cracks and a circular hole has been developed in the paper. Our approach is based on the spe-

cial Green’s function for a circular boundary and the resulting hypersingular integral equations. The

present method will facilitate the calculation of dynamic crack–hole interaction problem, which is com-

mon in practical engineering.

(2) The decomposition method adopted in this paper facilitates the construction of the hypersingular inte-

gral equations for multiple cracks. Also, it allows an accurate calculation of the Green’s functions even

when cracks terminate at the boundary of the circular hole.

(3) Combined with the Fourier transformation method, our method can also be used to analyze transient
crack–hole interaction problem. The problem of a crack–hole system subject to concentrated harmonic

forces or distributed harmonic forces can also be solved by the proposed method. After the solution of

the hypersingular integral equations, the stresses along the boundary of the circular hole can also be

calculated by summing the free wave field and the scattered field of the cracks.
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