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Abstract

The focus of this contribution is to develop a hypersingular integral equation method (HIEM) to solve the dynamic
interaction between multiple cracks and a circular hole illuminated by plane SH waves. The cracks can be in arbitrary
positions; in particular, they can terminate at the boundary of the circular hole. In order to solve the proposed problem,
the Green’s function of a point harmonic force applied at an infinite plane with a circular hole is obtained by the Graf
formula and the wave function expansion method. In order to construct the hypersingular integral equations for the
cracks, the Green’s function is separated into a closed form singular part and a regular part. On the basis of the
reciprocity principle as well as the obtained Green’s function, the hypersingular integral equations for the cracks are
obtained. Numerical solution of the hypersingular integral equations yields the dynamic stress intensity factors (DSIF)
at the crack tips. Comparison of present results with known results verifies the proposed method. Some numerical
examples are presented in the paper.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress concentration around holes is an important problem for civil engineering, earthquake engineering
and mechanical engineering and has, therefore, been investigated by numerous researchers using various
methods. There are large amount of investigations concerning hole problems, the most important contri-
butions of which were summarized in the two well-known works (Savin, 1961; Muskhelishvili, 1953b). In
the middle of 1950s, due to the requirements of practical engineering, the dynamic stress concentration
around holes began to attract the attention of many researchers (Pao and Mow, 1973). For example, the
dynamic response of a circular tunnel was investigated by Lee and Trifunac (1979) using the wave function

*Corresponding author. Address: Mathematics and Physics College of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
Tel.: +47-55583424; fax: +47-55583660.
E-mail addresses: ljfdoctor@yahoo.com, jianfei.lu@geo.uib.no (J.-F. Lu).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.05.033


mail to: ljfdoctor@yahoo.com,

6726 J.-F. Lu, A. Hanyga | International Journal of Solids and Structures 41 (2004) 6725-6744

expansion method; the stress concentration around multiple circular holes is studied by Providakis et al.
(1993) by using boundary element method (BEM) and Laplace transform method. For both the static and
the dynamic hole problems, the major concern is to calculate stress concentration factors along hole
boundaries, which are of great importance for engineering designs. Physically, the stress concentration
around hole boundaries may generate cracks near boundaries. As a result, the interaction between holes
and cracks has been a very popular topic for many researchers for a long time. For example, by using
complex method and superposition method, a general solution is obtained to the problem of the interaction
between a main crack and an arbitrarily located and oriented elliptical hole near its tip under mode 111
loading conditions (Gong and Meguid, 1991). The boundary integral equation (BEM) method was for-
mulated to evaluate the stress intensity factors of a crack approaching a curvilinear hole in an anisotropic
plane under arbitrary loadings (Liaw and Kamel, 1991). By using complex variables method and Fredholm
integral equation method, the interaction between multiple cracks and a circular hole under antiplane
deformation was studied by Chen and Wang (1986). Owing to the inherent difficulties involved in the
dynamic crack—hole interaction, the researches about crack—hole interaction have been mainly limited to
the static case so far. However, from the practical point of view, the dynamic crack-hole interaction
problems are crucial for the earthquake engineering and nondestructive evaluation (NDE).

To date, there are many investigations concerning the interaction between cracks and elastic waves. For
instance, the scattering of elastic wave by a single crack and multiple cracks were investigated by Loeber
and Sih (1968), Gross and Zhang (1988), respectively. The dynamic response of an interface crack has been
addressed by Qu (1995). Moreover, the dynamic response of periodic cracks and randomly distributed
cracks have been investigated by Zhang (1991) and Murai et al. (1995), respectively. Nevertheless, very few
researches have been reported about the dynamic crack—hole interaction problems. Only very recently Liu
and Liu (1999) analyzed the dynamic problem of two co-linear cracks located along the radial direction of a
circular hole. As the Green’s function of a half plane with a half circular hole is used in their paper, hence,
the presented method in Liu and Liu (1999) is only valid for the case of co-linear cracks along radial
direction. Due to the fact that the edge cracks generate more instability than ordinary cracks, there are
many investigations concerning the dynamic edge cracks for a straight boundary (Liu et al., 1997; Stone
et al., 1980; Datta and Shah, 1982; Abduljabbar et al., 1983). However, for arbitrary dynamic edge cracks
of a circular boundary, no research has been carried out so far. Consequently, up to now, there does not
exist general analytical method that can be used to solve the dynamic interaction between arbitrarily lo-
cated cracks and a circular hole.

In principle, the finite element method (FEM) can be used to solve the dynamic crack—hole interaction
problems. However, it requires the discretization of the entire volume around cracks and the hole. Also, for
the unbounded domain, the absorbing boundary layers are necessary for the prevention of non-physical
reflection from the calculation boundary. An alternative for solving the dynamic crack-hole interaction
problems is the boundary element method (BEM). For the boundary element method, only the boundary of
the calculation domain needs to be discretized. Moreover, for the unbounded domain, the non-reflecting
condition can be satisfied automatically due to the analytical form of the Green’s function. However, the
direct application of the conventional displacement BEM equation to crack problems leads to ill-posed
singular form displacement BEM equations (Cruse, 1988). Up to now, several numerical strategies have
been developed to circumvent this limitation. One popular way of treating this problem is the multi-domain
method in conjunction with the common displacement BEM equation (Lachat and Watson, 1976). The key
point of the multi-domain method is to introduce artificial boundaries to make each region contain one
crack surface. The two major disadvantages of the multi-domain method are the computational cost and
the necessity of dealing with the singular stress field ahead of the crack. The displacement discontinuity
method can also be used to solve the crack problem in the frame of BEM (Crouch and Starfield, 1983). A
comprehensive discussion of the displacement discontinuity method can be found in Cruse (1996). Another
option for dealing with the singular form problem is the dual boundary element method (DBEM). In the
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DBEM, the singular form displacement BEM equation is avoided by using two different equations for the
boundary nodes on the two opposite sides of the crack (Portela and Aliabadi, 1992; Selcuk et al., 1994). The
obvious advantage of this method is it does not require any division of the calculation domain.

A drawback of the above-mentioned BEM for solving dynamic crack—hole interaction problems is the
necessity of discretizing the circular-hole boundary numerically, which will reduce the accuracy. The
objective of the present paper is to establish a special hypersingular integral equation method (HIEM) to
analyze the interaction between arbitrarily located multiple cracks and a circular hole on the basis of
the Green’s function and the hypersingular integral equation method. The main difference between our
approach and the BEM lies in using the crack opening displacements (COD) as the unknowns in our case,
which can avoid the ill-posed BEM equation problem and will result in hypersingular integral equations for
the CODs. Besides, the collocation method developed by Kaya and Erdogan is used to discretize the
obtained hypersingular integral equations, which is different from the mesh discretization method used in
the BEM. The hypersingular integral equation method (HIEM) has been used for the analysis of static
crack problems for a long time (Ioakimidis, 1983; Chen, 1995; Kaya and Erdogan, 1987; Nied, 1987). For
dynamic crack problems, there are also some researches have been done (Neerhoff, 1979; Krenk and
Schmidt, 1982; van den Berg, 1981). The recent review concerning the elastic wave scattering by cracks has
been presented by Bostrom (2003). The major advantages of the presented HIEM is that it can be used to
calculate edge cracks of the circular hole due to the appropriate treatment of the Green’s function.
Moreover, due to the adoption of the specific Green’s function for the circular boundary domain, our
solution can satisfy the circular-hole boundary condition analytically. Consequently, in this sense, our
approach in this paper belongs to a semi-analytical method. In order to develop our approach, the Green’s
function of a point harmonic antiplane force applied at an infinite plane containing a circular hole is de-
rived by the Graf formula and the wave function expansion method. In terms of the asymptotic property of
the Hankel function and the Bessel function, the Green’s function is separated into a closed-form singular
part and a regular part, which will facilitate the construction of hypersingular integral equations for the
cracks. On the basis of the reciprocity principle as well as the obtained Green’s function, the hypersingular
boundary integral equations for the multiple cracks are derived. Numerical solution of the hypersingular
integral equations yields the dynamic stress intensity factors (DSIF) at the crack tips. Comparison of our
results with known results verifies the proposed method. For demonstration our method, some numerical
results and corresponding discussions are given in the paper.

Summarizing, the contribution of the present paper are as follows: (1) the Green’s function for a point
force applied at an infinite plane containing a circular hole is derived, more importantly, the closed form
expressions of the singular part Green’s function are obtained for the first time; (2) the hypersingular
boundary integral equations describing the dynamic interaction between the multiple cracks and a circular
hole are established; (3) the dynamic stress intensity factors (DSIF) at the crack tips are calculated by the
numerical solution of the obtained hypersingular integral equations.

2. Green’s function
2.1. Derivation of the Green's function

In order to derive the hypersingular integral equations for the dynamic crack—hole interaction problem,
the Green’s function of a point harmonic force applied at an infinite plane with a circular hole is required.
Here, the linear elastic infinite plane with a circular hole is assumed to be isotropic, the shear modulus and
the density of which are u, p, respectively. Suppose the radius of the circular hole is R. Without loss of
generality, the origin of the coordinate system xoy is assumed to coincide with the center of the circular hole

(Fig. 1).
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Fig. 1. An infinite plane with a circular hole and subject to a harmonic point antiplane force.

The Green’s function of the point force consists of two parts: a principal part and a complementary part.
The principal part is the solution for a point harmonic force applied at an infinite homogenous plane
without circular hole, while the complementary part is the scattered field of the circular hole due to the
incident wave of the principal Green’s function, which can be determined using wave function expansion
method as well as the boundary condition along the hole surface.

Suppose the point force is applied at point z = p_e', where p,, 0. denote the polar distance and polar
angle and i = v/—1 (Fig. 1). The longitudinal displacement for the principal Green’s function has the form
(Achenbach, 1973)

w (1,2) = —

(1) _ —iwt
48 (ke = 2])e (1)

t = p,e” is the receiver, the superscript G¥’ denotes the principal Green s function, k = w/v; is the wave
number and w, v are angular frequency and shear wave velocity and H ( ) denotes the zero order Hankel
function of the first kind. Since all the physical quantities contain the common time factor e, for sim-
plicity, it will be omitted in the remainder of the paper.

By using the Graf formula (Watson, 1962), the longitudinal displacement (1) is recast in the following
form

i o0
wo" (,2) = i > endukp ) HY (kp.) cosim(0, — 0.)],  p, < p. (2a)
m=0
@, N m _
w ([,Z) 4/1 mZ:OSme(kpz)Hm (kpl) Cos[m(gf 92)}7 pz < pl (Zb)

where J,,(e) is the mth order first kind Bessel function; ¢, = 1if m = 0, ¢, = 2 if m > 1 and in the remainder
of the paper, ¢, has the same value.

Using the constitutive relations of the infinite plane, the stresses for the principal Green’s function
are

o0

[z 'Z I3 Uep ) H. (kp.) coslm(6, — 0.)],  p, < p. (3a)

=0

I .
O-zG()(p) (t,z) = _E stm‘]m(kp,)Hrg)(kpz) sin[fm(6, — 6.)], p, < p. (3b)
t m=1
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» ik & /
09" (6,2) = 7 D enlu(kp)H, (kp,) cos[m(0: = 0.)],  p. < p, (3¢)
m=0
:—fzmem (kp.)HV (kp,) sin[m(0, — 0.)], p. < p, (3d)

where a prime denotes derivative with respect to the corresponding variable. In terms of the wave function
expansion method (Pao and Mow, 1973), the complementary Green’s function, i.e., the scattered field of
the circular hole due to the incident wave (1) may be expressed by

wo (t,2) = f:AmH;})(kp,) cos[m(6, — 6,)] (4)

where the superscript G0 denotes the complementary Green’s function. In terms of (1), (3) and (4), the
displacement and stresses of the total Green’s function are given by the following expressions

wO(t,z) = we" (t,2) + wo (1,2) (5a)
oS(t,2) = 69" (1,2) + 6% (1,2) (5b)
og(t,z) = 029 (t z) +Gzﬁ (t z) (5¢)

The total Green’s function satisfies following stress boundary condition

oW (1,2) + o (1,2)]
op,

1 =0 (6)

p=R
Inserting Egs. (2a), (4) into (6), the coefficients 4,, in Eq. (4) are obtained

(& kp,)J (kR
P IUAVALL o
4 B (kR)
Substituting Eq. (7) into Eq. (4) and using Egs. (2) and (5), the total Green’s function can be obtained.
In terms of the constitutive relations, the stresses for the complementary Green’s function in Eq. (5b)
and (5¢) have the following expressions

o9 (1,2 ukZA HW (kp,) cos[m(0, — 0.)] (8a)
m=0
05" (t,2) = = 5" md, 1) (kp,) sin[m (0, — 6.)] (8b)

' m=1

where coeflicients 4,, are given by Eq. (7).
2.2. The decomposition of the Green’s function

In the previous section, the Green’s function of a point force was determined. It follows from Eq. (1) that
the principal Green’s function is unbounded when ¢ — z. In order to establish the hypersingular integral
equations for the cracks as well as to calculate the Green’s function correctly, the singular parts should be
extracted from the total Green’s function.
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The procedure of extracting singular part from Eq. (3) consists in subtracting the divergent parts from
the series of the Green’s function and calculating the closed form expressions for the divergent parts. In
order to explain the decomposition procedure, we take Eq. (3a) as an example.

Hankel function and Bessel function of the first kind have the following asymptotic property
(Abramowitz and Stegun, 1965)

@ - - () - (%)
o= (5) o) (9)

Using Eq. (9), Eq. (3a) is rewritten as

(02 = 3 | Fantbn i p) — 5 (2 ) costm(t, - 0] + ik i)

o 2mp, \ p.

+ i 27Ipt <_>m COS[WI(G: - Hz)]? P, < p, (10)

Z

The first and the second term in Eq. (10) are everywhere finite, while the third term in the above equation is
unbounded when ¢ — z. However, the closed form expression for the third term has the form

> 5 (L) coslm(e, - 0

USSP o] [P —io0n]” L feh e
— It (Ui —Uz s 1(Ur—=Uz e _ 11
4npt;{|:pze * pze 4n Z_t+§_t P PSP ( )

—i0,

where z = p.e " and 7 = p,e ' denote the complex conjugates of z and ¢, respectively.

Therefore, it follows from (10) and (11) that the Green’s function of Eq. (10) has been divided into a
singular part and a bounded part. The singular part has a closed form expression and becomes unbounded
when ¢t — z, while the bounded part is everywhere finite. Eq. (3b) can have similar decomposition if the
same decomposition method is used. Consequently, the stresses of the principal Green’s function for p, < p
have following decomposition
05" (t,2) = 05y (t,2) + 055 (t,2) (12a)

65" (t,2) = oSy (t,2) + 05 (1,2) (12b)

where the subscripts R and S represent the regular and singular part of the Green’s function and the regular
and the singular stresses are given by

o502 = 3 | Stk ) =5 (2 )| cosn(0, = 0] + Gk 1 k). <

(13a)

) el(), e—10,
0%t =g (4 ) n<o (13b)
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Oas (1:2) = 4ni<z—t z—t)’ Pi< P (13d)
Similarly, for the case of p, > p, in Egs. (3c) and (3d), using the same decomposition method as above, one
has the same decomposition formula as Eq. (12). The corresponding regular part and the singular part
stresses for Eqs. (3¢) and (3d) are given by

o502 = Y | Bt o) 5 (%) | costmt0, = ) 0> . (140)
00 - (4 ) non (14b)
o 02) = =3 st i) ko) o () snlm0,— ) > . (149
9= (- E5) o (14

From Eqgs. (13) and (14), it can be seen that the singular stresses of the principal Green’s function have the
same expressions for the case of p, < p, and p, > p,. Therefore, in global Cartesian coordinates xoy, the
singular stresses of the principal Green’s function have the following uniform expression
1 1

dnz—t

(15)

Note that except for the time factor e 7, the singular stresses of the principal Green’s function coincide
with the Green’s function of the corresponding static problem.

On the other hand, it follows from Egs. (7)—(9) that if z — C; and ¢t — z, the complementary Green’s
function given by Egs. (7) and (8) are unbounded. Consequently, the complementary Green’s function also
contains singular parts. For the same reason, the singular parts must be subtracted from the comple-
mentary Green’s function. We shall use Eq. (8a) to explain the decomposition of the complementary
Green’s function. Using Egs. (7) and (9), Eq. (8a) is separated as follows

- 11

’ R2
00" (t,2) = > {“kAer(nl) (kp,) + 7 (p P
t tFz

sz (t Z) lo-zyS (t Z)

)m] cos[m(0; — 0.)] + ,ukAoHél)’(kp,)

m=1

x 11 m
_ mz;l 0 (ptpz) cos[m(0, — 0,)] (16)

where the first and second terms in the above equation are bounded while the third term is unbounded
when z — Cy and ¢ — z. The closed form expression for the third term has the form

oo 1 1 R2 )m 1 oo {|: RZ ] m R2 . m
S e (] e}
; 2n Pt (ptpz [ ' )] 47tpt ; 0.0, 0P
11 R2 i0, RZ i0;
:___<_e+e ) a7

4r t \1z—R*? z—R?
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Using Egs. (7) and (9), Eq. (8b) can be separated in a similar way. Consequently, the stresses of the
complementary Green’s function have the following decomposition

68" (t,2) = a8 (t,2) + 053 (1,2) (18a)

ZV

9 (t,2) = a5y (1,2) + 05 (1,2) (18b)

where the regular and singular stresses are given by

1 1 R2 m
4 H o — A H 1
er 2 |:,Uk m kp[) + b 0, (ptpz> :l COS[m(Q, 92)] + ,uk 0 (kpt) ( 93)
6@ 1 1/ R R2ell:
P T\ R 19
O'er(aZ) 47rt<lZ—R2+tZ—R2 ( b)
=3 Bt ko) 5 (2 )m}sm[ (0, 0.) (19)
z()R s m i 27‘C 2, o,
G L L[ R R
[0S (t,Z) - 47i t <?Z —R2 Z—R2 (19(1)

where the coefficients 4,, are given by Eq. (7).
If the following stress combination is introduced, the singular stresses in Eq. (19) is rewritten as

0 (0.2) — 0 (1.2) = o 20)
z o Z) = — o ——————

Taxs »8 21 t(tZ — R?)

It is worth noting that the singular stresses of the complementary Green’s function in Eq. (20) have the
same expressions as the corresponding static case except the time factor e '* (Lu, 2000).

In this section, the Green’s function of a point harmonic force applied at an infinite plane with a circular
hole is derived. The Green’s function is separated into a regular part and singular part. The closed form
expressions for the singular part Green’s function, which are crucial for the construction of the hyper-
singular integral equations, are obtained for the first time.

3. The hypersingular boundary integral equations for the multiple cracks

The total wave fields of the crack—hole interaction problem can be divided into two parts. One part is the
free field, in which case it is assumed that the cracks do not exist. Then, the free wave field is determined by
the incident plane SH wave and the scattered field of the circular hole. The scattered field of the circular
hole can be obtained by using the wave function expansion method. The other part is the scattered field of
the cracks. On the basis of the reciprocity principle and using the obtained Green’s function, the scattered
field of the cracks can be expressed by the crack opening displacements (COD). Using the boundary
conditions along the crack surfaces, the hypersingular integral equations can be obtained in terms of the
free wave field and the scattered field of the cracks.
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3.1. The scattered field of a single crack

Suppose there are N arbitrarily located cracks near a circular hole (Fig. 2). The total scattered field of the
N cracks is the superposition of the scattered fields of the N single cracks; hence in order to obtain the total
scattered field, the scattered field of a single crack is required.

Assume that the half length of crack L; is a; and the two tips of the crack are 4;, B;, respectively. The
obliquity angle of Z; with respect to the x-axis is o; + f3;; the polar angle and polar distance of tip 4; are «;,
p., respectively; the obliquity angle of L; with respect to the x;-axis is §; (Fig. 2). Since the Green’s function
has been separated into a singular and a regular part, accordingly, the scattered field of the L; can also be
divided into a singular part and a regular part.

To begin with, we discuss the singular scattered field of the L, Let the crack opening displace-
ment (COD) of L; be ¥;(u), 0<u<2a; (Fig. 2). By using Egs. (15) and (20) and the reciprocity
principle (Kuprddze 1965), the displacement of the singular scattered field of the crack L; is obtained as
follows

1 2aj ( |:ei(fxf+ﬁj) e*i(“ﬁﬁj) ] 1 2a; [Rzei(¢/+ﬁj) Rze*i(“ﬂrﬁ/)
. u
J

(sj) _ L ) _
s @) =~ am du+ RO ey Rl oy

z—t zZ—1
(21)

where the superscript s; represents the scattered field of the crack L;; the subscript S denotes the singular
part of the scattered field; z = p,e = x + iy, ¢ is integration point and ¢ = p,e'* = p, " + ue!**/)). Using
the constitutive relation, the stress of the singular scattered field of the crack L; in xoy—coordinate system
are given by

2a; ei(“j+ﬂ') 2a; Rzefi(a‘/*’ﬂ )
o / ), : N A O Ll (22)

(s)) : (s7)
—1 = — 5 A j
O (Z) GZyS (Z) 2mi t— 2)2 ut 2mi 0 A (?Z - R2)2

The regular scattered field of the Z; can also be obtained by using the regular Green’s function (13), (14) and
(19) as well as the reciprocity prlnc1ple (Kupradze, 1965). The longitudinal displacement of the regular
scattered field of the L; reads

Fig. 2. Dynamic interaction between multiple cracks and a circular hole swept by SH wave.
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W (2) = /Oza/ lpj(u){[o'fo(;) (1,2) + 05 (t,2)] cos(a; + B, — 0,) — [ag,;) (t,2) + oG (,,z)} sin(o; + B; — 9,)}du
(23)

where the subscript R in (23) represents the regular part of the scattered field and the stress components
oG (t,2), a%n (t,2), a%r (1,2), 0% (t,z) in Eq. (23) are given by Eqgs. (13), (14) and (19). The stresses
determined by the regular scattered field of L; have the form

2a; G») G G G)
(sj) ! ao-zUR (Z’Z) ao-zﬂR (t,Z) aO-er (t,Z) aaer (t,Z)
/ = IP . Jp— —
a1 (2) ,u/o /(u){ l %. + . cos(a; + B; — 0,) . + .

x sin(o; + f; — 9,)}du (24a)

2a; Gp) G(d) Gp) G
(s) H ! aGZGR (t’ Z) aGZGR (t7 Z) aGer (t7 Z) aGer (t7 Z)
D7) =1 P, B —0,) —
O_ZHR (Z) 0. /() j(u){ [ a@z + 602 COS(O(] + 'B_/ ) a@z + aez

x sin(o; + f; — (9,)}du (24b)

3.2. Derivation of the hypersingular boundary integral equations

The considerations of the above section gave us the scattered field of a single crack. The total scattered
field of the N cracks can be obtained by superposing the scattered fields of the N single cracks. As men-
tioned above, the hypersingular integral equations can be constructed by using the free wave field and the
total scattered field of the N cracks. The superposition of the free wave field and the scattered field of the
cracks satisfies the stress-free condition along the crack surfaces. Consequently, for an arbitrary collocation
point z (Fig. 2) at the crack L;, one has

+Za" zel, i=1,...,N (25)

where the superscript f denotes the free wave field and the subscript zy, of the stresses implies that the
stresses in Eq. (25) are the stress components with respect to the x/4,), coordinate system (Fig. 2). Sub-
stitution of Egs. (22) and (24) into (25) yields the following group of hypersingular integral equations for
the multiple cracks

2a; 2a; 2 N(j#i) 2a;
0 " Yi(u) I /
— f. / 5 du + —— Y. (u)Re | — du + Yi(u)kis(t,z)du
m P 0 (u—v) 2n (u) [(tz—Rz)2 ; 0 Hkys(t2)
2a;
/ V() du = —o)(2) (26a)

0<v<2al~, ZeLi,izl,...,N, 0<u<2aj,j:1,...,N

el(ithita+h;) R2ei(itBi—ui=f))
I u c
kis(t —Re| ——— —Re| ——— 26b
]S( Z) 27_[ [ (t—Z)Z ‘| +27‘[ el (EZ_Rz)Z ‘| ( )
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1| 865y (t,2) | 005y (t,2) ~ u | 0657 (1,2)  0a% (t,2)
kir(t,z) = l 0. T a0 cos(o; + B; — 0,) cos(oy + B, — 0.) — pz Ty

z

) (
aag,ﬁ (t,2) n aaﬁ,;) (t,2)

x sin(o; + f; — 0,) cos(o; + f; — 0.) — u[ % %

] cos(a; + B; — 0;)

z

009Y (1,2) N 0aCy (1,2)

x sin(o; + f; — 6.) + p o o

] sin(a; + B; — 0,) sin(o; + f; — 0:) (26¢)

z z

where f.p. indicates that the hypersingular integral in the above equations must be defined in the sense of a
finite-part integral (Hadamard, 1923); z = p_e'> = p, e + vel®*#) is the collocation point on L; and
t=pe” = p, e +ue*) is the integration point located on L.

4. Numerical method and results
4.1. Numerical method for solving the hypersingular integral equations
The integral equation (26) are one-dimensional hypersingular integral equations. There is a standard

numerical method for solving this kind of hypersingular integral equation (Kaya and Erdogan, 1987).
Before numerical solution, we standardize the above hypersingular integral equations as follows

2.2 N(#i)
i f.p. lp( drRe{ Ra; } Vst )a?dz
2n P —1(T—r 27‘c/lp [7(0)z(r) — / Y,(c ()]J

+ ; [1 ‘//j(f)kin[l(T),Z(l”)]af dr = —(;Z(;)[Z(r)],z(r) €L, i=1,...,N (27)

i

where 1= w—a;)/a;, j=1,...,N, r=@—a)/a;, i=1,...,N, =1<t, r< +1, y;(r) =L ¥i(u),
i=1,...,N
The unknown functions in Eq. (27) are assumed following form

Ui(r) = (1+ 0" (1 =) Phi(x),  hi(x) = Zcik‘l?k (28a,b)

where 7y, and 1/2 are the stress singularity order at the tip 4; and B;; A;(t) are analytical functions which are
expanded into Taylor series (28b). In the present paper, we truncate the series and take M terms to
approximate the functions 4;(t). Our calculations demonstrate that if M is larger than 6, satisfactory results
can be achieved. Note that generally, for the dynamic problem in this paper, the coefficients c;, in Eq. (28b)
are complex.

The 7y, in Eq. (28a) takes the value 1/2 if the tip 4; is embedded in the homogeneous linear elastic medium,
while it vanishes if the tip 4; terminates at the boundary of the circular hole (Kaya and Erdogan, 1987).

For calculating the hypersingular integral in the integral equations, following finite-part regularization
formula (Hadamard, 1923; Kaya and Erdogan, 1987) is used

o [ YO [ i) v w0 () e (157)

S (r—r) 1 (t—r

where the integral on right-hand side is a convergent improper integral.
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If the collocation points for discretization of Eq. (27) are chosen according to the formula

2 1
,%:ax(_ﬁi_f> (k=0,1,...,M) (30)

Eq. (27) can be reduced to (M + 1) x N complex algebraic equations. Numerical solution of the
(M + 1) x N complex algebraic equations yields the complex coefficients in Eq. (28b). The functions #;(t;)
and the dynamic stress intensity factors (DSIF) at the crack tips can be calculated in a straightforward
manner after determining the complex coefficients.

As mentioned above, if the tip 4; terminates at the hole boundary, there is no stress singularity at the tip
A;. If tip 4; is embedded in the homogeneous linear elastic medium, then in a neighborhood of the tip 4;
(u = 0), the crack open displacement (COD) ¥;(u) of the crack L; has the form

i(u) = u ¥ (u) (31)

where ¥, (u) satisfies the Holder condition in a neighborhood of the tip 4;. By using the behavior of
Cauchy type integral (Muskhelishvili, 1953a), the dynamic stress intensity factor (DSIF) of the tip 4; is
expressed as

Vanoo
K3, = Tﬂ'PA, (0) (32)
Similarly, at the neighborhoods of tip B; (u = 2a;), the crack open displacement (COD) ¥;(u) has the form
Yi(u) = (2a; — u)'"* ¥ (u) (33)

where ¥} (u) satisfies the Holder condition in the neighborhoods of the tip B;. Again, by the asymptotic
property of Cauchy type integral (Muskhelishvili, 1953a), the dynamic stress intensity factor (DSIF) at the
tip B, is given by the expression

V27

Kip.

=, ) (34)

4.2. Numerical results and discussion

Although the present method is quite general, due to the limitations of the paper, we only present
calculation and discussion for some typical examples. For verifying the proposed method, in Section 4.2.1.
our results are compared with some known results. In Sections 4.2.2-4.2.6 some numerical results and
corresponding analysis are given. In computation, the Green’s functions in Egs. (13),(14) and (19) are
expressed as 50-term truncated series. The parameter M in Eq. (28b) is taken as 8§ in all the numerical
examples.

4.2.1. Comparison of our results with known results

In this section, some special cases of our solution are compared with three known results. The com-
parison shows that our solution is in a good agreement with the known results.

Two co-linear radial cracks of the same length terminate at opposite sides of the boundary of a circular
hole. If the length of the cracks is much larger than the radius of the circular hole, then the crack-hole
interaction problem is reduced to a single straight crack problem. In calculation, let a; = a, = 0.5, R = 0.01
and the incidence angle of SH wave equal to 90°. The results (DSIF) of present paper are compared with
Fig. 2 in Loeber and Sih (1968). From Fig. 3, it can be seen that our results agree very well with those of
Loeber and Sih (1968).



J.-F. Lu, A. Hanyga | International Journal of Solids and Structures 41 (2004) 6725-6744 6737

1.304

1.25+4

1.20+

1.15+4

1.104

Abs (k)

1.05

Present results
®  Loeber and Sih,1968

1.00+

0.95+

0.90 T T T T T T T T
00 02 0.4 06 08 10 12 14 16

2ka,

Fig. 3. Results of this paper for the case of two co-linear edge cracks with the hole radius tending to zero compared with those of
Loeber and Sih (1968).

Two co-linear radial cracks of the same length terminate at the opposite sides of the boundary of a
circular hole. The incidence angle of SH wave is 90°. This particular problem was solved in Liu and Liu
(1999). The comparison of the results (DSIF) of the present paper with those of Liu and Liu (1999) is shown
in Fig. 4. It can be seen clearly from Fig. 4 that the present results are in good agreement with those of Liu
and Liu (1999).

The incidence angle of SH wave is 90°. If let the wave number of the incident wave approach zero, then,
the dynamic problem in this paper is reduced to a static crack—hole interaction problem. The position of
the two cracks are shown in Fig. 5. Our results are compared with those of Chen and Wang (1986). From
Table 1, an extremely good agreement between the two results is observed.

4.2.2. The influence of the length of an edge crack on its DSIFs

In this example, the relation between the length of an edge crack and its DSIFs will be considered. The
two tips of the crack are 4 and B, respectively. The tip 4 of the crack terminates at the boundary of the
circular hole, while the tip B of the crack is located in the homogeneous medium. Therefore, one has
p4 = R. The length of the crack is 2a and the ratio a/R takes 0.1,0.3,0.7,1.0. In calculation, we assume

12

A —— kR, = 1.0 (Present)
4 - kRg = 0.5 (Present)
‘A B kR,= 10 (Liuand Liu, 1999)

1 . A kR, =0.5 (Liuand Liu, 1999)
0.84=—n \.\\ Vs
A
0.6 .
A e
0.4 ; _— A
A

0.2 "R
] SH

104

Abs (k)

0.0

Fig. 4. Results of this paper for the case of two co-linear radial cracks compared with those of Liu and Liu (1999).



6738 J.-F. Lu, A. Hanyga | International Journal of Solids and Structures 41 (2004) 67256744
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Fig. 5. An infinite region with one circular hole and two cracks subject to static antiplane load.

Table 1

Comparison of our results with those of Chen and Wang (1986)
0(°) 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
k34 1.290 1.288 1.282 1.275 1.267 1.260 1.254 1.250 1.247 1.246
ks 1.289 1.287 1.287 1.275 1.267 1.260 1.254 1.250 1.247 1.246
ksp 1.725 1.722 1.712 1.699 1.685 1.672 1.662 1.654 1.649 1.648
kp. 1.725 1.721 1.712 1.699 1.687 1.672 1.662 1.654 1.649 1.648
ksc 1.725 1.650 1.464 1.233 0.998 0.768 0.547 0.330 0.117 —0.091
ks 1.725 1.650 1.463 1.233 0.998 0.768 0.546 0.330 0.117 —0.091
ksp 1.289 1.267 1.204 1.107 0.982 0.835 0.669 0.487 0.294 0.091
kap. 1.289 1.267 1.204 1.107 0.982 0.835 0.669 0.487 0.294 0.091

Note: ks, ksp, ksc, ksp are the results of the present paper and k4., k3p., kscs, kap. are those of Chen and Wang (1986).

o =n/4, p = —n/4. Thus, the edge crack is parallel to the x-axis. Assume the incident angle of the plane SH
wave is 270° and the incident plane SH wave is given by

W(l)(z) _ AI eik[cosy,wrsinyy] (35)

where Aj, k are the displacement amplitude and the wave number and y is the incident angle. The dynamic
stress intensity factor (DSIF) at the tip B of the crack is expressed as follows

K3B = ,U.Alk\/ ﬁRk3B (36)

In general, the DSIFs take complex values, so only the absolute values of the DSIFs are given here. Results
showing the variation of |k3z| versus the non-dimensional wave number AR are given in Fig. 6. The kR in
Fig. 6 varies from 0 to 4.0. With the increasing of a/R, the maximum values of |k;| increase corre-
spondingly. Also, the low frequency resonance phenomenon becomes more pronounced when a/R takes
larger value.

4.2.3. The influence of the incidence angle of SH waves on the DSIFs of an edge crack

In this example, we will consider the influence of the incidence angle of the SH wave on the dynamic
response of a crack terminating at the boundary of the circular hole. Suppose the tip 4 of the crack ter-
minates at the hole boundary (p, = R) and the tip B is embedded in the homogeneous medium. Let & = 0,
f = n/4 and let the length of the crack be 2a. The ratio a/R takes 0.1, 0.3, 0.7, 1.0. The incidence angle of
the SH wave takes 0°, 45°, 90°, 135° and 180° and the non-dimensional wave number kR varies from 0 to
4.0. The DSIFs are normalized by Eq. (36). Fig. 7 shows the variation of |k3z| versus the non-dimensional
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Fig. 6. The influence of the length of an edge crack on its DSIFs with a/R =0.1, 0.3, 0.7, 1.0, incidence angle y = 270° and

kR = 0.0-4.0.
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Fig. 7. The influence of the incidence angle of SH waves on the DSIFs of an edge crack with incidence angle y = 0°, 45°, 90°, 135°, 180°

and kR = 0.0-4.0: (a) case for a/R = 0.1, (b) case for a/R = 0.3, (c) case for a/R = 0.7, (d) case for a/R = 1.0.
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wave number kR for different incident angles. When the incidence angle is 0°, |k35| takes small value for
smaller a/R; but for larger value a/R, |ksp| increases significantly. This is due to the fact that when the
incident angle is 0°, the crack is on the shadow side of the hole, so its dynamic response is weak, but when
the crack length increases, the crack reaches beyond the shadow region of the hole. Moreover, both the
amplitude and the resonance frequency of |k;3| depend on the incident wave significantly. For small values
a/R, |ksg| achieves a maximum at 90° incidence angle; but for large value of a/R, |ksg| has a maximum at
135°. In addition, the resonance phenomenon is more obvious for 90° and 135° than for the other incidence
angles.

4.2.4. The influence of the obliquity of an edge crack on its DSIFs

In this example, the influence of crack position will be considered. Suppose the tip 4 of an edge crack
terminates at the hole boundary while tip B is embedded in the homogeneous medium. The non-dimen-
sional values of DSIFs are defined in Eq. (36). The calculation parameters are chosen as: p, =R, & =0,
—85°< < 85° a/R = 0.1, 0.3, the incident angle of the plane SH wave 7 = 90° and the non-dimensional
wave number kR = 0.0, 1.0, 2.0, 3.0, 4.0. Fig. 8 illustrates the variation of |k;z| versus the angle . For small

0.8
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02 --x---kR=4.0
01 T T T T T T T T T T
80 60 40 20 0 20 40 60 8
@ p()
——KkR=00
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I 2/R=0.3
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(b) ()

Fig. 8. The influence of the obliquity of an edge crack on its DSIFs with f = —85° to 85°, incidence angle y = 90° and kR = 0.0, 1.0, 2.0,
3.0, 4.0, respectively: (a) case for a/R = 0.1 and (b) case for a/R = 0.3.
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value kR, |k;p| achieves its maximum when the crack is near the horizontal position, while for larger kR, |k35|
does not achieve maximum at the horizontal position. So for the static and lower frequency problem, the
edge cracks normal to the direction of SH wave propagation are more dangerous than others; while for the
high frequency case, the dangerous position of the edge cracks depends on the ratio a/R and the wave
number of the incident wave.

4.2.5. Two parallel cracks interacting with a circular hole

Consider two cracks L, L, near the circular hole and the two cracks are parallel to the x-axis. The tips of
the two cracks are 4, B; and A4,, B, respectively. The lengths of the L, and L, are 2a; and 2a,. Assume the
ratio a;/R = a,/R = 0.1, 0.3, 0.7, 1.0. The midpoints of the two cracks coincide with the y-axis (Fig. 9a).
The distances between the cracks and the x-axis are equal to 4 and #/R = 1.2. The incident angle of plane
SH wave is 90° (Fig. 9a). The values of DSIFs at the crack tips are normalized by Eq. (36). The variations of
k34, |, k38, |5 |k3a, |5 |K38,| Versus the non-dimensional wave number kR for different values of a;/R, a»/R are
given in Fig. 9. The value kR varies from 0 to 5.0. Fig. 9 shows that for small values of @, /R and a»/R, |k3, |,
|k3p, |, |k34,|s |k3p,| do not vary significantly with the variation of wave number and the resonance phe-
nomenon is not apparently visible. For larger values of a,/R, a/R, the resonance phenomenon gets more
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Fig. 9. Two parallel cracks interacting with a circular hole with AR = 0.0-5.0, incidence angle y =90°, 4#/R =12 and
a;/R=ay/R=0.1, 0.3, 0.7, 1.0: (a) results for the tips 4, and By, (b) results for the tips 4, and B,.
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pronounced: the resonance frequencies decrease; the resonance amplitudes increase considerably; the res-
onance domains get narrow. It also can be concluded from Fig. 9, that the resonance amplitude of the crack
A,B, which is at the incident side of the circular hole are always greater than those of the crack 4,B;.
However, the difference between the resonance amplitudes of the two cracks decreases with increasing crack
lengths.

4.2.6. Interaction between an edge crack, an interior crack and a circular hole

In this example the interaction between the two cracks near the circular hole will be considered. Let 4,
By and 4,, B, denote the tips of L, L, respectively. The tip 4, of the crack L, terminates at the hole
boundary (p,, = R). Suppose p,, = 1.1R, a; =0, f; = 45° and o, = 180°, f, = 0°. Let the lengths of L, L,
be 2ay, 2a,. The length of L, is fixed and a; /R = 0.3, while a,/R = 0.1, 0.3, 0.7, 1.0. The incident angle of the
plane SH wave is 90°. The values of DSIFs at tips 4, B, B, are normalized by Eq. (36). The variations of
|k34, |5 |k3p, |, k3, | for different a, /R versus non-dimensional wave number kR are given in Fig. 10. With the
increasing of ay/R, |ksp,| increase significantly. Also, the resonance phenomena of the L, are significant
when a,/R increases, while the resonance frequencies vary little. In addition, |ks,,|, |k3s | also increase
slightly with increasing a,/R.
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Fig. 10. Interaction between two cracks: an edge crack, an interior crack and a circular hole with kR = 0.0-4.0 and incidence angle
y = 90°: (a) case for a;/R = 0.1, (b) case for a,/R = 0.3, (c) case for ay/R = 0.7, (d) case for a»/R = 1.0.
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5. Conclusions

Through above analysis and calculation, we can draw following conclusions:

(1) A special hypersingular integral equation method (HIEM) for solving the dynamic interaction between
multiple cracks and a circular hole has been developed in the paper. Our approach is based on the spe-
cial Green’s function for a circular boundary and the resulting hypersingular integral equations. The
present method will facilitate the calculation of dynamic crack—hole interaction problem, which is com-
mon in practical engineering.

(2) The decomposition method adopted in this paper facilitates the construction of the hypersingular inte-
gral equations for multiple cracks. Also, it allows an accurate calculation of the Green’s functions even
when cracks terminate at the boundary of the circular hole.

(3) Combined with the Fourier transformation method, our method can also be used to analyze transient
crack—hole interaction problem. The problem of a crack—hole system subject to concentrated harmonic
forces or distributed harmonic forces can also be solved by the proposed method. After the solution of
the hypersingular integral equations, the stresses along the boundary of the circular hole can also be
calculated by summing the free wave field and the scattered field of the cracks.
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